List extension packs
/app
/app/spacy
/app/swish
/app/tokenize/prolog
/data/config-enabled
/swish
/swish/lib
/swish/lib/plugin
/swish/lib/render
/swish/pack/profile/prolog
/swish/pack/profile/prolog/profile/backend
/swish/pack/rserve_client/prolog/r
/swish/pack/sCASP/prolog
/swish/pack/sCASP/prolog/scasp
/swish/pack/sCASP/prolog/scasp/clp
/swish/pack/sCASP/prolog/scasp/lang
/usr/lib/swipl/boot
/usr/lib/swipl/library
/usr/lib/swipl/library/chr
/usr/lib/swipl/library/clp
/usr/lib/swipl/library/clp/clpq
/usr/lib/swipl/library/clp/clpqr
/usr/lib/swipl/library/clp/clpr
/usr/lib/swipl/library/dcg
/usr/lib/swipl/library/dialect
/usr/lib/swipl/library/dialect/swi
/usr/lib/swipl/library/http
/usr/lib/swipl/library/lynx
/usr/lib/swipl/library/pldoc
/usr/lib/swipl/library/semweb
pengine://02a67a48-e468-47d2-857e-04f253049b1c
pengine://161c63de-0be3-4081-a6d7-9d0da1520e98
pengine://27f7ed61-26b3-469c-be7a-03500e53157b
pengine://369a1dd8-cb90-4e18-90b9-bbc2057486aa
pengine://708626d0-41d0-42cc-9545-d206e3b58b61
pengine://77035c21-17c1-4ed9-a72b-f64ee73c5238
pengine://80af86de-591a-43ac-bb2e-8669f65b8eb1
pengine://81b20cf0-f0fd-43a2-9bda-6de12ec40e6f
pengine://9023e42b-7de4-4c95-b314-ed88cdf3927f
pengine://9733cdd8-e4aa-425a-9e18-1c78c387a566
pengine://bc962ab5-6b38-4bb8-bc71-4dd4620409c0
pengine://caffe046-57b8-40d4-8d2c-99e8e475c4b0
pengine://e66cba6c-a2b7-4333-86af-1c2c9b84a1c5
pengine://f97286d0-afd5-4d46-89d0-4bbd680c14cc
/swish/lib/render/chess.pl
All
Application
Manual
Name
Summary
Help
lib
render
sudoku.pl -- SWISH Sudoku renderer
chess.pl -- SWISH chessboard renderer
term_rendering//3
table.pl -- SWISH table renderer
codes.pl -- SWISH code-list renderer
svgtree.pl -- SWISH SVG tree renderer
graphviz.pl -- Render data using graphviz
c3.pl -- SWISH C3.js based chart renderer
url.pl -- SWISH url renderer
bdd.pl -- Render Binary Decision Diagrams (BDDs)
mathjax.pl -- SWISH Mathjax renderer
gvterm.pl -- View complex terms using Graphviz
term_rendering
(+Term, +Vars, +Options)
//
Render an N-queens problem. This renderer assumes that the solution is represented by a permutation of a list of integers 1..N, where the I-th integer describes the column of the queen at row I.